详细介绍
到达地球大气上界的太阳辐射能量称为天文太阳辐射量。在地球位于日地平均距离处时,地球大气上界垂直于太阳光线的单位面积在单位时间内所受到的太阳辐射的全谱总能量,称为太阳常数。太阳常数的常用单位为瓦/米2。因观测方法和技术不同,得到的太阳常数值不同。世界气象组织 (WMO)1981年公布的太阳常数值是1368瓦/米2。地球大气上界的太阳辐射光谱的99%以上在波长 0.15~4.0微米之间。大约50%的太阳辐射能量在可见光谱区(波长0.4~0.76微米),7%在紫外光谱区(波长<0.4微米),43%在红外光谱区(波长>0.76微米),最大能量在波长 0.475微米处。由于太阳辐射波长较地面和大气辐射波长(约3~120微米)小得多,所以通常又称太阳辐射为短波辐射,称地面和大气辐射为长波辐射。太阳活动和日地距离的变化等会引起地球大气上界太阳辐射能量的变化。
太阳辐射通过大气,一部分到达地面,称为
直接太阳辐射;另一部分为大气的分子、大气中的微尘、水汽等吸收、
散射和反射。被散射的太阳辐射一部分返回宇宙空间,另一部分到达地面,到达地面的这部分称为散射太阳辐射。到达地面的
散射太阳辐射和
直接太阳辐射之和称为
总辐射。太阳辐射通过大气后,其强度和光谱能量分布都发生变化。到达地面的太阳辐射能量比大气上界小得多,在太阳光谱上能量分布在紫外光谱区几乎绝迹,在可见光谱区减少至40%,而在红外光谱区增至60%。
太阳辐射通过大气,一部分到达地面,称为直接太阳辐射;另一部分为大气的分子、大气中的微尘、水汽等吸收、散射和反射。被散射的太阳辐射一部分返回宇宙空间,另一部分到达地面,到达地面的这部分称为散射太阳辐射。到达地面的散射太阳辐射和直接太阳辐射之和称为总辐射。太阳辐射通过大气后,其强度和光谱能量分布都发生变化。到达地面的太阳辐射能量比大气上界小得多,在太阳光谱上能量分布在紫外光谱区几乎绝迹,在可见光谱区减少40%,而在红外光谱区增至60%。
在地球大气上界,北半球夏至时,日辐射总量最大,从极地到赤道分布比较均匀;冬至时,北半球日辐射总最小,极圈内为零,南北差异最大。南半球情况相反。春分和秋分时,日辐射总量的分布与纬度的余弦成正比。南、北回归线之间的地区,一年内日辐射总量有两次最大,年变化小。纬度愈高,日辐射总量变化愈大。
到达地表的全球年辐射总量的分布基本上成带状,只有在低纬度地区受到破坏。在赤道地区,由于多云,年辐射总量并不最高。在南北半球的副热带高压带,特别是在大陆荒漠地区,年辐射总量较大,最大值在非洲东北部。
太阳辐射是地球表层能量的主要来源。太阳辐射在大气上界的分布是由地球的天文位置决定的,称此为天文辐射。由天文辐射决定的气候称为天文气候。天文气候反映了全球气候的空间分布和时间变化的基本轮廓。
太阳辐射随季节变化呈现有规律的变化,形成了四季.
除太阳本身的变化外,天文辐射能量主要决定于日地距离、太阳高度角和昼长。
地球绕太阳公转的轨道为椭圆形,太阳位于两个焦点中的一个焦点上。因此,日地距离时刻在变化。每年1月2日至5日经过近日点,7月3日至4日经过远日点。地球上接受到的太阳辐射的强弱与日地距离的平方成反比。
太阳光线与地平面的夹角称为太阳高度角,它有日变化和年变化。太阳高度角大,则太阳辐射强。
白昼长度指从日出到日落之间的时间长度。赤道上四季白昼长度均为12小时,赤道以外昼长四季有变化,23.5°纬度的春、秋分日昼长12小时,夏至和冬至日昼长分别为14小时51分和9小时09分,到纬度66°33′出现极昼和极夜现象。南北半球的冬夏季节时间正好相反。
天文辐射的时空变化特点是:①全年以赤道获得的辐射最多,极地最少。这种热量不均匀分布,必然导致地表各纬度的气温产生差异,在地球表面出现热带、温带和寒带气候;②天文辐射夏大冬小,它导致夏季温高冬季温低。
大气对太阳辐射的削弱作用包括大气对太阳辐射的吸收、散射和反射。太阳辐射经过整层大气时,0.29μm以下的紫外线几乎全部被吸收,在可见光区大气吸收很少。在红外区有很强的吸收带。大气中吸收太阳辐射的物质主要有氧、臭氧、水汽和液态水,其次有二氧化碳、甲烷、一氧化二氮和尘埃等。云层能强烈吸收和散射太阳辐射,同时还强烈吸收地面反射的太阳辐射。云的平均反射率为0.50~0.55。
经过大气削弱之后到达地面的太阳直接辐射和散射辐射之和称为太阳总辐射。就全球平均而言,太阳总辐射只占到达大气上界太阳辐射的45%。总辐射量随纬度升高而减小,随高度升高而增大。一天内中午前后最大,夜间为0;一年内夏大冬小。
太阳辐射能在可见光线(0.4~0.76μm)、红外线(>0.76μm)和紫外线(<0.4μm)分别占50%、43%和7%,即集中于短波波段,故将太阳辐射称为短波辐射。
由于地球以椭圆形轨道绕太阳运行,因此太阳与地球之间的距离不是一个常数,而且一年里每天的日地距离也不一样。众所周知,某一点的辐射强度与距辐射源的距离的平方成反比,这意味着地球大气上方的太阳辐射强度会随日地间距离不同而异。然而,由于日地间距离太大(平均距离为1.5 x 108km),所以地球大气层外的太阳辐射强度几乎是一个常数。因此人们就采用所谓 “太阳常数”来描述地球大气层上方的太阳辐射强度。它是指平均日地距离时,在地球大气层上界垂直于太阳辐射的单位表面积上所接受的太阳辐射能。
通过各种先进手段测得的太阳常数的标准值为1353w/m2。一年中由于日地距离的变化所引起太阳辐射强度的变化不超过上3.4%。
地球表面在吸收太阳辐射的同时,又将其中的大部分能量以辐射的方式传送给大气。地表面这种以其本身的热量日夜不停地向外放射辐射的方式,称为地面辐射。
由于地表温度比太阳低得多(地表面平均温度约为300K),因而,地面辐射的主要能量集中在1~30微米之间,其最大辐射的平均波长为10微米,属红外区间,与太阳短波辐射相比,称为地面长波辐射。
地面的辐射能力,主要决定于地面本身的温度。由于辐射能力随辐射体温度的增高而增强,所以,白天,地面温度较高,地面辐射较强;夜间,地面温度较低,地面辐射较弱。
地面的辐射是长波辐射,除部分透过大气奔向宇宙外,大部分被大气中水汽和二氧化碳所吸收,其中水汽对长波辐射的吸收更为显著。因此,大气,尤其是对流层中的大气,主要靠吸收地面辐射而增热。
太阳能的波长分布可以用一个黑体辐射来模拟,黑体的温度为5800K。太阳能波长分布在紫外光、可见光和红外光波段。这些波段受大气衰减的影响程度各不相同。可见光辐射的大部分可到达地面,但是上层大气中的臭氧却吸收了大部分紫外光辐射。
由于臭氧层变薄,特别是南极和北极地区,到达地面的紫外光辐射越来越多。入射的红外光辐射,有一部分被二氧化碳、水蒸气和其他气体吸收,而在夜间来自地球表面的较长波长的红外辐射大部分则传到了外空。这些温室气体在上层大气中的积累,可能会使大气吸收能力增加,从而导致全球气候变暖和天气变得多云。虽然臭氧减少对太阳能集热器的影响甚微,但温室效应可能会增大散射辐射,并可能严重影响太阳能集热器的作用。
表示太阳辐射强弱的物理量,称为太阳辐射强度。单位是焦耳/厘米2?分,即在单位时间内垂直投射到单位面积上的太阳辐射能量。
大气上界的太阳辐射强度取决于太阳的高度角、日地距离和日照时间。太阳高度角愈大,太阳辐射强度愈大。因为同一束光线,直射时,照射面积最小,单位面积所获得的太阳辐射则多;反之,斜射时,照射面积大,单位面积上获得的太阳辐射则少。
太阳高度角因时、因地而异。一日之中,太阳高度角正午大于早晚;夏季大于冬季;低纬地区大于高纬度地区。日地距离是指地球环绕太阳公转时,由于公转轨道呈椭圆形,日地之间的距离则不断改变。
地球上获得的太阳辐射强度与日地距离的平方呈反比。地球位于近日点时,获得太阳辐射大于远日点。
据研究,1月初地球通过近日点时,地表单位面积上获得的太阳辐射比7月初通过远日点时多7%。
太阳辐射强度与日照时间成正比。日照时间的长短,随纬度和季节而变化
宇宙微波背景辐射
大气吸收地面长波辐射的同时,又以辐射的方式向外放射能量。大气这种向外放射能量的方式,称为大气辐射。由于大气本身的温度也低,放射的辐射能的波长较长,故也称为大气
长波辐射。
大气辐射的方向既有向上的,也有向下的。大气辐射中向下的那一部分,刚好和地面辐射的方向相反,所以称为大气逆辐射。大气逆辐射是地面获得热量的重要来源。由于大气逆辐射的存在,使地面实际损失的热量比地面以长波辐射放出的热量少一些,大气的这种保温作用称为大气的温室效应。这种大气的保温作用使近地表的气温提高了约18℃。月球则因为没有象地球这样的大气,因而,致使它表面的温度昼夜变化剧烈,白天表面温度可达127℃,夜间可降至-183℃。
红外辐射的影响
地面和大气之间以长波辐射的方式进行着热量的交换,大气对地面起着保温作用。这种作用可用地面有效辐射(F0)表示:F0=Fg-δEA
地面有效辐射就是地面辐射和地面所吸收的大气逆辐射(δEA)之间的差值。通常,地面温度高于大气温度,所以地面辐射要比大气逆辐射强。
地面有效辐射的强弱随地面温度、空气温度、空气湿度及云况而变化。
太阳辐射能量作用
到达地球上的太阳辐射能量只有很小的一部分,但它的作用却是相当大的。
其一,对地理环境的影响。直接的作用如岩石受到温度的变化影响而产生风化。间接作用,地球上的大气、水、生物是地理环境要素,他们本身的发展变化以及各要素之间的相互联系,大部分是在太阳的驱动过程中完成的。地球表面划分为五带。为什么要划分五带呢?因为地球表面各个地方的纬度不同,不同纬度地带获得的太阳热量是不一样的。如热带一年中太阳可以直射,获得的热量最多;寒带太阳高度很低,并且有长时间的极夜,所以获得的热量最少。也就是因为太阳辐射具有纬度差异导致了各地获得的热量也有差异。但是在热量盈余的地方比如赤道,温度并没有越来越高;热量亏损的地方,比如两极,温度也没有越来越低,而是保持相对稳定。对于整个地表来说,热量应该是平衡的,因而热量多余和热量不足的地方,要发生热输送。 其二,太阳辐射为我们的生产和生活提供能量。人们对太阳辐射作用最直接的感受来自于它是人们生产和生活的主要能源。如植物的生长需要光和热,晾晒衣服需要阳光,工业上大量使用的煤、石油等化石燃料是太阳能转化来的,被称为“储存起来的太阳能”。还有太阳灶、
太阳能热水器、太阳能干燥器、太阳房、太阳能发电、太阳能电池等。除直接使用的太阳能外,地球上的水能、风能也来源于太阳。 西藏的省会拉萨有一别称,号称“日光城”。为什么叫这个名称呢?因为西藏自治区位于青藏高原上,地势较高,太阳光到达地表的路程短,空气稀薄,天空中云量少,损失少,所以太阳辐射强,日照时间长,称为“日光城”。 直辖市重庆有个别称,有中国的“雾都”之称。为什么这个地方一年中多雾呢?这个地方海拔较低,受地形的影响,四川盆地使得水汽积聚不易上升,使水汽增多,而西南季风不可能越过秦岭;只能影响四川盆地,故带来大量水汽,并且距海较近,所以一年中阴雨天多,天空中经常阴云密布,所以光照少,太阳辐射能贫乏。所以人们常用“蜀犬吠日”来形容四川盆地的气候特色。